Mining Frequent Subgraph by Incidence Matrix Normalization
نویسندگان
چکیده
Existing frequent subgraph mining algorithms can operate efficiently on graphs that are sparse, have vertices with low and bounded degrees, and contain welllabeled vertices and edges. However, there are a number of applications that lead to graphs that do not share these characteristics, for which these algorithms highly become inefficient. In this paper we propose a fast algorithm for mining frequent subgraphs in large database of labeled graphs. The algorithm uses incidence matrix to represent the labeled graphs and to detect their isomorphism. Starting from the frequent edges from the graph database, the algorithm searches the frequent subgraphs by adding frequent edges progressively. By normalizing the incidence matrix of the graph, the algorithm can effectively reduce the computational cost on verifying the isomorphism of the subgraphs. Experimental results show that the algorithm has higher speed and efficiency than that of other similar ones.
منابع مشابه
Mining Frequent Graph Sequence Patterns Induced by Vertices
The mining of a complete set of frequent subgraphs from labeled graph data has been studied extensively. Furthermore, much attention has recently been paid to frequent pattern mining from graph sequences (dynamic graphs or evolving graphs). In this paper, we define a novel class of subgraph subsequence called an “induced subgraph subsequence” to enable efficient mining of a complete set of freq...
متن کاملA new algorithm for mining frequent connected subgraphs based on adjacency matrices
Most of the Frequent Connected Subgraph Mining (FCSM) algorithms have been focused on detecting duplicate candidates using canonical form (CF) tests. CF tests have high computational complexity, which affects the efficiency of graph miners. In this paper, we introduce novel properties of the canonical adjacency matrices for reducing the number of CF tests in FCSM. Based on these properties, a n...
متن کاملEfficient Frequent Connected Induced Subgraph Mining in Graphs of Bounded Tree-Width
We study the frequent connected induced subgraph mining problem, i.e., the problem of listing all connected graphs that are induced subgraph isomorphic to a given number of transaction graphs. We first show that this problem cannot be solved for arbitrary transaction graphs in output polynomial time (if P 6= NP) and then prove that for graphs of bounded tree-width, frequent connected induced su...
متن کاملFrequent subgraph mining algorithms on weighted graphs
This thesis describes research work undertaken in the field of graph-based knowledge discovery (or graph mining). The objective of the research is to investigate the benefits that the concept of weighted frequent subgraph mining can offer in the context of the graph model based classification. Weighted subgraphs are graphs where some of the vertexes/edges are considered to be more significant t...
متن کاملFinding Frequent Subgraphs in a Single Graph based on Symmetry
Mining frequent subgraphs is a basic activity that plays an important role in mining graph data. In this paper an algorithm is proposed to find frequent subgraphs in a single large graph that has applications such as protein interactions, social networks, web interactions. One of the key operations required by any frequent subgraph discovery algorithm is to perform graph isomorphism. The propos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JCP
دوره 3 شماره
صفحات -
تاریخ انتشار 2008